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The gas industry uses basic mathematics, much as any other industry, for
accounting functions, wage allocation, budgeting and other finance related areas.
However here we will discuss a few applications of mathematics specific to the
gas industry. These are calculations of

(a) pressure drops in pipes and

(b) standard volumetric flowrates.

(a) Newcastle receives its natural gas, via Sydney, from Moomba in South Aus-
tralia (see Figure 1) where the pressure is about 7000 kPa1. When the gas
reaches the outskirts of Sydney it can take one of several routes. Some contin-
ues on to feed the city centre, some goes south to Wollongong and even Canberra
- the rest travels north to feed Newcastle (see Figure 2). By the time the gas
reaches Hexham Trunk Receiving Station (T.R.S.) the pressure has dropped to
below 5000 kPa. These pressure drops are caused by friction between the gas
and the walls of the pipe and by the fact that gas cannot be replaced as quickly
as it is used. Many equations have been proposed that predict these pressure
drops but the one favoured by the gas industry is

P 2
1 − P 2

2 = 3.6× 107 · Q
2L

F 2D5
.

where

P1 and P2 are the inlet and outlet pressures in kPa,

Q represents the flowrate of gas in m3/hr,

L is the length of the pipe in metres,

D is the pipe diameter in mm and finally

F is the friction factor.
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The friction factor is obtained from the split definition

F =

{√
Re
8 if Re ≤ 2000
−2 log

(
0.058
D + 7.85F

Re

)
if Re > 2000

where Re = 32000Q/D is called the Reynolds Number. Note that the second
equation has F on both sides and so must be solved by some approximation
method e.g. Newtons method, linear iteration or the bisection method. At
present the maximum flowrate to Sydney is about 285000m3/hr and the diame-
ter of the pipe from Moomba to Sydney is 860mm. Thus Re = 1.06×107 which
is clearly greater than 2000 so to find F we must use the second of the defining
equations. Using linear iteration we find that F = 18.8. So now if we assume a

11 kPa = 1000 pascals = 1000 newtons/sq. m = 1000 kg/m/s/s
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pressure of 7000 kPa at Moomba then the pressure at Sydney (1300km away)
is given by

P2 =

√
P 2

1 −
3.6× 107Q2L

F 2D5
= 5120kPa.

We can now use this resultant pressure as the inlet pressure on the line from
Plumpton T.R.S to Hexham T.R.S. The maximum flowrate to Hexham T.R.S.
is about 60000m3/hr but the pipe diameter has been reduced to only 500mm.
So now Re = 3.84 × 106 which leads to a friction factor of F = 17.6. Now
assuming the pressure at Plumpton T.R.S. is P1 = 5120kPa then the pressure
at Hexham T.R.S. is given by

P2 =

√
P 2

1 −
3.6× 107Q2L

F 2D5
= 4886kPa.

About half of the gas that arrives at Hexham T.R.S. is used there while the
other 30000m3/hr continues on to Newcastle. It is left as an exercise to the
reader to calculate the final pressure drop given that the diameter of pipe is
now only 355mm and the length is about 12 km. Because of industrial process
limitations the minimum tolerable pressure at Hexham T.R.S. is 3700 kPa. So
if we again assume a pressure of 5120 kPa at Plumpton T.R.S. and use the same
friction factor (justified later) we find that the maximum allowable flowrate at
Hexham T.R.S. is given by

Qmax =

√
(P 2

1 − P 2
2 )F 2D5

3.6× 107L
= 138722m3/hr.

To justify the use of F = 17.6 note that if we now use Qmax to calculate a new
Reynolds number and hence a new friction factor, F ′ say, we find that F ′ =
17.87. Using F ′ in the above equation we can calculate a new maximum flowrate
Q′max = 140850m3/hr with which we can continue the iterative reasoning until
both Qmax and F converge to some fixed values. These turn out to be F =
17.872 and Qmax = 140866m3/hr. Thus Newcastle is using only about 43%
of the full capacity of the trunk main. The versatile pressure drop equation is
also used to predict the necessary diameter of pipe required to supply say a new
industry or a new domestic area. However we must know beforehand the inlet
pressure, an estimate of Qmax, the minimum tolerable pressure at the end of the
pipe and the distance from the supply point. Since D is required in the formula
for F we have to resort to an iterative argument similar to the one used above.

(b) As we saw in the first section the pressure of gas varies from point to
point in a pipe network. Now recalling the ideal gas law

PV = nRT
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where P is the pressure, V is the volume, T is the temperature2 and n and R

are constant. If we fix the temperature then as pressure varies the volume will
vary. Similarly if pressure is constant then as temperature varies the volume will
again vary. This makes the measurement of the volume of gas, bought or sold
by the gas industry, a rather tricky procedure. To get around the problem, of
varying pressures and temperatures, whenever volume is measured the pressure
and temperature of the gas are also measured and the volume is the “adjusted”
to base conditions. This is a temperature of 288 K and a pressure of 101.3 kPa.
If we let the subscript “b” stand for base conditions and the subscript “f” for
flowing conditions then

PbVb = nRTb

and
PfVf = nRTf .

Dividing these two equations and rearranging to obtain Vb at the head of the
resulting equation we find that

Vb = Vf ·
Pf
Pb
· Tb
Tf
.

However this is only valid for an “ideal gas” and since real gases are not ideal
(far from it at high pressures) the equation used by the gas industry is

Vb = Vf ·
Pf
Pb
· Tb
Tf
· F 2

pv.

where Fpv (the so-called supercompressibility factor) is a measure of the differ-
ence between the real gas in question and an ideal gas under the same conditions.
It turns out that Fpv depends on many factors specific to any particular gas but
once the gas has been chosen (e.g. Natural Gas) the two main factors are pres-
sure and temperature of the gas (see graph). Formulae do exist that predict the
values of Fpv for varying pressures and temperatures, however they are beyond
the scope of this paper. Note that the graph uses imperial units, where 1 psi =
6.895 kPa.

The gas company has microcomputers at several large industries which re-
ceive signals that tell them the pressure of the gas Pf , the temperature of the
gas Tf , and the actual flowrate Vf . These so-called flow computers use Pf and
Tf to first calculate Fpv and then use all four values Pf , Tf , Vf and Fpv to
calculate the corrected flowrate Vb via the equation above. If for any reason the

2Note: T is in degrees Kelvin which is Celcius +273.15
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flow computer stopped its calculations then a manual determination of the vol-
ume missed would have to be made. For example, suppose the flow computers
at Hexham T.R.S. had failed for 24 hours during which the actual volume used
was Vf = 14000m3. Assuming that Pf = 5000kPa and Tf = 288K then from
the graph we see that Fpv = 1.06 (at 725 psi, 60 F). Given that Pb = 101.3kPa
and Tb = 288K we can calculate the corrected volume for the day to be

Vb = 14000× 5000
101.3

× 288
288
× 1.062 = 776426m3.

This gives an average rate of 32351m3/hr which approximates the usage men-
tioned in part (a) for Hexham T.R.S.
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