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Abstract: We present a characterization of all quartic polynomials with exactly
three distinct roots and the property that it and all its derivatives have rational roots.
It turns out that there are an infinite number of distinct such quartics, each of which
corresponds to a point on a related elliptic curve. Furthermore the collection of these
points forms a proper subgroup of the group of rational points on the curve.

Definition: A polynomial, p(z), in Q[z] is a rational-derived quartic if and
only if it and all its derivatives have rational roots. Similarly p(z), in Z[~] is
an integer-derived quartic if and only if it and all its derivatives have integer
roots.

Definition: We denote by P,(Q) the set of all rational-derived polynomials
of degree n.

1. INTRODUCTION. A number of authors have considered the problem
of finding integer-derived polynomials . See for example [CAR 89], [GAL 90],
[CAL 89] and [CHA 60] which contain results completely describing solutions
for degrees 1, 2 and 3, and providing two infinite families of integer-derived
polynomials for all degrees greater than 1. Carroll, in particular, makes a con-
jecture that P4(Z) contains essentially only one polynomial with three or more
distinct roots, (apart from translation, rescaling or reflection about the x-axis),
namely

p(z) = (z + 167)*(z — 141)(z — 193).

This was shown [G-M 93] to be incorrect by the discovery of two non-
equivalent polynomials. (See discussion above Table 1.) We have found that
there are in fact an infinite number of non-equivalent such polynomials which
are characterized by the following theorem.

Consider the following elliptic curve and subgroup of rational points:

E: Y? = X(X—48)(X +6),
Ea(Q = {k(75,405):k € Z}.

Theorem. All rational-derived quartics of the form y = z?(z — 1)(z — a)
for a # 0,1 are given by a = (5X +Y + 30)/9(X + 2) where (X,Y) € Ea(Q).
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This throws doubt on the conclusions of Carroll that P,,(Z) contains only 2
infinite families of integer-derived polynomials for n > 5, which was based on
his conjecture above.

2. QUARTICS. If we classify all quartics on the basis of the number of
distinct roots then only the case of 4 distinct roots remains unsolved. As shown
in the references mentioned above, rational-derived quartics with one distinct
root are all equivalent to an infinite family, namely y = (z — a)*.

All quartics with two distinct roots fall into two categories: namely y =
(x—a)*(z—0b) and y = (z—a)?(x —b)2. Only the first gives an infinite family of
rational-derived quartics Va, b € Q while the second family provides no rational-
derived quartics.

Any quartic with 3 distinct roots must be a translation, reflection or rescaling
of

y=z*(z — 1)(z — a). (1)

Notice that any rational-derived quartic (RDQ) can be rescaled by the least
common multiple of the denominators of all the roots to produce an integer-
derived quartic (IDQ), and any IDQ is automatically an RDQ so it is sufficient
to characterize all RDQ’s. Another reason for working over Q is that the root
of the third derivative is always rational for rational a.

The first and second derivatives have rational roots if and only if the dis-
criminants of the quadratic parts are rational squares. Specifically we require
that 9a2 — 14a + 9 and 9a? — 6a + 9 are simultaneously rational squares. An
important observation is that such solutions are a subset of the solution space to
the product of these two quadratic forms being a rational square. Consequently
we consider the rational points on the curve

Y? = (9X? — 14X +9)(9X” — 6X +9). 2)
Firstly we rescale the quartic using the transformation X = U/9,Y = V/9

to give
V2 = U* — 20U3 + 246U% — 1620U + 6561.

Next we remove the cubic term by setting U = W + 5 to give
V2 =W*+96W? — 160W + 2736.

Mordell’s bi-rational transformation of a quartic to a cubic [MOR 69, p. 139],
namely W = (T +40)/2(S +16), V =25 —W? — 16 leads to

T? = 4(S + 14)(S — 34)(S + 20).
One final rescaling T' = 2y, S = z — 14 gives the elliptic curve in standard form:

E: y?=x(zx —48)(z +6). (3)



Rescaling and translating Carroll’s IDQ leads to an RDQ of the form of (1)
with @ = 90/77. Hence the point (X,Y) = (90/77,291.171/77?) lies on (2).
Using the transformations above implies that the point (z,y) = (75,405) €
E(Q). Notice that all rational points on (3) correspond to rational points on
(2), but only those which also force 9X? — 14X + 9 to be a rational square (and
hence automatically force 9X2 — 6X + 9 € Q?) lead to values of a which make
(1) an RDQ.

3. CHARACTERIZING RDQ’S FROM E

3.1 Rational Points on E(Q). Recall that all RDQ’s of the form given by
equation (1) correspond to a subset of the rational points on the elliptic curve
given by equation (3). Hence we need to characterize all the rational points
on E. Standard theory tells us that the rational points form a group, which
we denote by E(Q). It turns out that the group E(Q) has torsion free part
isomorphic to Z and has torsion subgroup isomorphic to the Klein 4-group.

3.1.1 Torsion Subgroup. Let E:..s(Q) denote the torsion subgroup of
E(Q). The discriminant, A, of E is given by A = 216310 hence reducing the
curve modulo 5 (which does not divide A) leads to a non-singular curve. In fact
a short calculation shows that

E(Z/5 ) =y

By the Nagel-Lutz theorem [SIL 86, pp. 221-222], the torsion subgroup of
E must be a subgroup of E(Z/5Z). We now show that there are no points of
order 4 and hence E;yrs(Q) must be Z/2Z @ Z /2Z as the only points of order
2 on E are just (z,y) = (—6,0),(0,0) or (48,0). Suppose there exists a point
P = (z0,y0) € E(Q) such that 4P = O, where O denotes the additive identity
of the curve E. Then 2P = (z1,y1) must be one of the order 2 points. The
equation of the line through Pis y = A(x — zo) + yo and intersecting this with
E gives a cubic in z:

23 — (42 + A*)z® +...=0.

Since the sum of the roots is negative the coefficient of 22, we obtain 2z¢ +z; =
42 + A2, Substituting A = f'(z0)/2yo = (323 — 84z¢ — 288)/2y, into this
expression leads to a quartic equation in xg:

Ty — Az1z3 + (576 + 16871)z3 + 11522170 + 82944 = 0.
Each of the three cases for z; results in a contradiction.
i. £1 =0 = 23 = —288 which has no rational solutions.

ii. 1 = —6 = ¢ = 12, or — 24 both of multiplicity 2 but not lying on E.



ili. z; = 48 = 29 = 48 + 361/2 both of multiplicity 2 but irrational.

Hence there are no points of order 4 and E4,»s(Q) = {O, (—6,0),(0,0), (48,0)}.

3.1.2 Rank of E. To determine the rank (i.e. the number of linearly
independent generators of the torsion-free part) of E we consider the isogeny ¢,
as in [SIL 86, p.302], defined by

y? y(—288 — z?)
22’ x2 )

P(z,y) = (
which maps E to its 2-isogenous curve, E given by
E: Y?=X3+84X?+2916X.
We also make use of the usual 2-descent homomorphism, «a, given by

a0) = 1  mod(Q)?
a((0,0)) = -288mod (Q)?
a((z,y)) = = mod (Q°)*.

The following figure summarizes the relationship between the elliptic curves,
mappings and groups mentioned above.

E % E
o o
Ty (O3

Figure 1.

From Tate’s Theorem [S-T 92, pp.89-98] we know that the rank of E, denoted
by r(E), is given by B
or(®) _ [(EQ)| [a(E(Q)|
1 .
For any point (z,y) € E(Q) we can take z = dr?/s?, y = u/v where
ged(r, s) =1, d is squarefree and ged(u,v) = 1 which substituted into E gives

dt? = (dr? — 48s%)(dr® + 6s?) (4)

for some rational ¢. Since a((z,y)) = d mod (Q*)? we see that the number of
distinct images of points from the elliptic curve in Q*/(Q*)? is given by the
number of distinct d for which (4) has at least one non-trivial solution, that is
7,8 # 0. This lets us bound |a(E(Q))| and similarly |@(E(Q))| and hence the
rank of E.



Now d | —288s* which implies that d | 6 as d is squarefree. When d =
1,—2,3,—6 we find that there are non-trivial solutions, namely

(r,s,t) = (36,3,1080), (1,1,10), (4,1,0), (1,1,0)

respectively. The remaining four values of d have no solutions. When d = —1
equation (4) becomes

—t% = r* 4 427252 — 288s*.

Considering this modulo 3 implies that both ¢ and r are divisible by 3. So letting
t = 3T and r = 3R leads to

—T? =9R* + 14.3R%s2 — 255*.

But this forces T and s to be divisible by 3 which contradicts ged(r,s) = 1.
Hence there can be no solutions in this case which implies that —1 ¢ a(E(Q)).
However we already know that —2, 3, —6 € a(E(Q)). This implies that 2,—3,6 ¢
a(E(Q)). Otherwise, for example, —2 x 2 = —4 = —1 mod (Q*)? and so —1
must be in a(E(Q)) which is a contradiction. Hence |a(E(Q))| = 4.

Applying the same process to E leads to the search for solutions to

DT? = D?R* + 84DR?S? + 29165*. (5)
As before D | 6. For D = 1,6 we have the solutions
(R,S,T) = (10,1,146), (1,1,24)

respectively. The remaining six values of D have no solutions. When D = —1
equation (5) becomes

—T? = (R? — 545%)% + 24R>S.

This has no non-trivial real solutions let alone integer solutions. Similarly for
D = —2,-3,—6 there are no possible solutions. When D = 2 equation (5)
becomes

T? = 2R* + 84R*S? + 14585*.

Now 2 | T so we make the substitution T' = 27 to give
21> = R* + 42R?S? 4+ 7295*.

Reducing this modulo 3 leads to the conclusion that three divides both R and
7. Using this last fact in the same way lets us remove the powers of three from
the coefficient of S* and finally show that 3 | S which contradicts the fact that
ged(R, S) = 1. Hence there are no solutions in this case. Now 3 ¢ @(FE(Q)) since
otherwise for example 3 x 6 = 2 mod (Q*)? which implies that 2 € @(E(Q)).
Thus [@(E(Q))| = 2.



Finally this shows that the rank of E is one. Hence E(Q) = {mP + nQ}
where P € {(—6,0), (0,0), (48,0)}, Q =(75,405), m =0,1 and n € Z.

Thus  B(Q = 24 0% o

3.2 RDQ’s form a subgroup of E(Q). Having characterized E(Q) we
searched for points in E(Q) which corresponded to RDQ’s. We discovered that
all small multiples of the point (75, 405) did in fact correspond to RDQ’s and in
addition, (—6,0) added to any of these multiples also gave an RDQ. We call a
point on E(Q) which corresponds to an RDQ a rational-derived point (RDP).
Using the transformations which convert equation (2) into equation (3) gives us
a mapping a : E(Q) — Q defined by

5¢ 4y + 30
a:a(m,y):w

Specifically, any (z,y) € E(Q) which is an RDP corresponds to an a € Q for
which (1) is an RDQ.

Lemma 1. If (z,y) € E(Q) is any RDP then —((z,y) + (75,405)) is also
an RDP.

Proof. Firstly let (Z,7) = —((z,v) + (75,405)) and @ = a((Z,y)). Notice
that if (z,y) is an RDP then 3r € Q such that

9a® — 14a + 9 = r°. (6)
It is sufficient to show that @ satisfies

9a°> — 14a+9=7"
for some 7 € Q. Intersecting the line through (z,y) and (75,405) with E gives

7522 — 963z — 21600 — 810y
(z —75)2
—115425y + 10287yx + 8748000 + 2901420z — 4052 — 571052
(z — 75)3 '

Hence
693yx + 20925y + 4067552 + 465750 — 107552

(z — 75)(7722 — 1263z — 810y — 10350)

a=

If we write a = n/d and @ = 7/d then

nit — dd = —693z* + 8181z + 107843422 + 6026400z + 693y>z + 20925y>.



Now using E to eliminate 32 leads to nm — dd = 0 and hence a@ = 1. Replacing
a by 1/a in (6) gives
9 — 14a + 9a° = (ra)®

as required. =

Corollary. If X = (z,y) € E(Q) is any RDP and Q = (75,405) then

1

X == -0

Lemma 2. If (z,y) € E(Q) is any RDP then (z,—y) is also an RDP.
Proof. Again let (Z,79) = (z,—y) then @ = (5z — y + 30)/(9(z + 2)). As
before it is sufficient to show that @ satisfies

9@’ — 14+ 9 =72

for some 7 € Q. Solving the equations for a,a in terms of z,y leads to

60— 18a—18a

YT T94+9a-10
_ 180(a+a)

Y 7 9at+9a-10

Substituting this into the elliptic curve gives a quadratic in a, namely
(90@ — 77)a® + (90a> — 254@ + 90)a + @(90 — 77a) = 0.
Solving this for a and substituting into equation (6) we obtain

4(90a — 77)%r® = py — 10ps*ps

where
pr = 36450a* — 86670a° + 101331a — 74504a + 41301
pr = (9@ —14a+ 9)(9a* — 6a + 9)
p3 = 405a° —513a — 134.

Squaring and then completing the square where appropriate results in
(90a—177)>2 [{(51362—542E+513)+4r2(906—77)}2—400r2 (9&2—14a+9)(9a+2)2}

being identically zero. If @ # 77/90 then we have

0a? 14349 — [(51362 — 5424 + 513) + 4r%(90a — 77)]2‘

20r(9a + 2)



Since z,y € Q we have @,r € Q and hence the right hand side above is a rational
square.

From these two lemmata we can conclude that addition of points and nega-
tion of points on E preserves the property of being an RDP.

Theorem 1. The set of all rational-derived points forms a subgroup Es(Q)
of E(Q) where Es(Q) = { m(—6,0) +n(75,405) }, m = 0,1 andn € Z.

Proof. Recall that (z,y) = (—6,0) is an RDP hence any element of Es(Q)
is an RDP. So we just need to show that any RDP is an element of Es(Q).
Suppose not, then there exists an RDP (z,y) € E(Q)\Es(Q) such that (z,y)
can be expressed in the form

[ (48,0) + n(75,405)
(@,y) = { (0,0) + n(75,405).

If any such (z,y) is an RDP then by repeated application of Lemmata 1 and 2
we see that (z,y) — n(75,405) must also be an RDP. This implies that either
(0,0) or (48,0) must be an RDP. Now a((0,0)) = 5/3 and a((48,0)) = 3/5
neither of which satisfy 9a2 — 14a + 9 € Q? and hence (0,0) and (48, 0) are not
RDP’s which contradicts our premise. =

3.3 Further Refinement of Eg(Q). We now notice that Es(Q) is de-
generate in the sense that four different points correspond to the same rational
derived quartic. In fact, the mapping a : Es(Q) — Q is two-to-one while the
RDQ’s corresponding to a and 1/a are equivalent. We require the following
two technical lemmata, the first of which is analogous to Lemma 1, and the
second showing that the mapping a is one-to-one when restricted to a subgroup

of Es((@)
Lemma 3. If X = (z,y) € E(Q) is any RDP and P = (—6,0) then
1

Proof. Firstly let (Z,7) = (—6,0) + (z,y) and @ = a((Z,7y)) Following the
line of reasoning used in Lemma 1, we intersect the line through (z,y) and
(—6,0) with E and negate the y coordinate to give

6(48—1z) _  —324y
z+6 Y= @wre)?

=

Hence
—9(5x — y + 30)

(z +6)(z—175) "

a =



Again writing @ = n/d and @ = 7/d then
nm — dd = 9(z® — 422> — 288z — %) = 0.
Clearly this leads to aa = 1 as required. =
Lemma 4. If we define a proper subgroup EA(Q) of Es(Q) where Ea(Q) =
{n(75,405)},n € Z then a : E4(Q) — Q is one-to-one.

Proof. Consider two points (z,y), (Z,7) € E4(Q). Now a((z,y)) = a((Z,7))
if and only if

502 +y+30  5T+7+30
9(z+2)  9ZT+2)
= gz +2)—y(EZ+2) = 20T -—x).

Squaring this and using E leads to
2gy(z +2)(T+2) = (z+2)(T +2)(T°z + T2® + 27° — 88Tz + 2% — 2887 — 288z).
Again squaring and using E we obtain

(z +2)(7 +2)(F — z)> [{(w +2)7 + (20 — 288) ) + soow} =0.

Hence we have one of the following four cases:

iii. z ==z, or
iv. {(z+2)T + (22 — 288)}" = —8004%.

Notice that for any point (z,y) € Ea(Q) we must have z > 48 as n(75,405)
remains on the unbounded component of E by Bezout’s Theorem. Case (iv)
implies that z and T must have opposite sign unless zZ = 0 in which case the
only possible solutions are (z,Z) = (0,144), (144,0) again contradicting the
result of Bezout’s Theorem . Similarly cases (i) and (ii) can never occur. So the
only remaining case is T = £ which when substituted back into the expression
for a((z,y)) = a((Z,v)) gives ¥ = y. Thus a is one-to-one. =

Theorem 2. The set of all rational-derived quartics with exactly three dis-
tinct roots is generated by EA(Q).

Proof. Let P = (—6,0), Q = (75,405) and X = (z,y) be any RDP. Since
X € Es(Q) we can write X = mP +nQ m = 0,1. Now if m = 1 we get by
Lemma 3

a(P+nQ) = m



as 2P = O. Observe that the quartic y = 2?(z — 1)(z — 1) is equivalent, under
rescaling, to y = z%(z — 1)(z — a) and so does not provide a new RDQ. Hence
when X = P + n(@ we obtain the same RDQ as when X = n@Q. Thus it is
sufficient to consider the case m = 0. Now let n = —r for » > 1. Then

-
a((r —1)Q)

by the Corollary to Lemma 1. This implies that it is sufficient to consider the
positive multiples of ) as any negative multiple of @ will not provide us with
any new RDQ’s. Now by Lemma 4 we have | Im(a) |=| Ea(Q) | . Since Q
is a point of infinite order, every (positive) multiple of @ on E is distinct and
consequently #RDQ’s = umzﬂ =Ng. =

By way of illustration, the following table lists the first four elements of
E4(Q), the resulting a value under the bijection from Lemma 4 and the non-
zero roots of the corresponding integer-derived quartic. Note that the first
example is equivalent to Carroll’s IDQ and the second and third examples had
been previously found by Galvin and MacDougall.

a(-rQ) =

n | n(75,405) a non-zero roots of IDQ
1 (75 405) 90/77 308, 360
129283 167167
2 (100, 1050 ) 197310 668668, 1990440
2447877675 128665027260
3 ( 4713241 T 769283212011 —514660109040,
116043549439635
— 0539446911 ) 277132848044
978328360054081 7010366636418797651
4| ( 6685637635600 ° 4173952380480465660 16695809521921862640,
25593591021206391940079
17386 785508365 406000 ) 28041466545675190604

Table 1: Correspondence between elements of E4(Q) and IDQ’s

4. CONCLUSION. This completely determines all rational-derived quar-
tics with exactly three distinct roots. The remaining unsolved degree 4 case is
that with four distinct roots and at present a computer search has not found
any examples.
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